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Abstract. Airborne lidar data for fishery surveys often do not contain physics-based features
that can be used to identify fish; consequently, the fish must be manually identified, which is
a time-consuming process. To reduce the time required to identify fish, supervised machine
learning was successfully applied to lidar data from fishery surveys to automate the process of
identifying regions with a high probability of containing fish. Using data from Yellowstone Lake
and the Gulf of Mexico, multiple experiments were run to simulate real-world scenarios.
Although the human cannot be fully removed from the loop, the amount of data that would
require manual inspection was reduced by 61.14% and 26.8% in the Yellowstone Lake and
Gulf of Mexico datasets, respectively. © 2021 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.JRS.15.038503]
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1 Introduction

Setting annual catch limits of fish is difficult because individual stocks vary widely as a result
of fishing pressure and environmental factors such as the availability of food, predation levels,
and larval survival. Knowledge of these stocks is critical to setting appropriate catch limits,
but this knowledge is often imprecise. For example, a 2003 paper in the journal Nature claimed
that “large predatory fish biomass today is only about 10% of pre-industrial levels.”1 The con-
clusion was based on a Catch Per Unit Effort analysis, in which commercial fish landings and
the time spent fishing are combined to estimate fish biomass. The analysis was controversial2,3

and speaks to the desirability of an estimate of biomass that does not depend on the fishery in
question.

The two main fishery-independent survey types are controlled catches and acoustics. In con-
trolled catches, it is the effort that is controlled. The same gear is used the same way in the same
place at the same time of year each year to build up a time series of catches that can be related to
increases or decreases in the fish stock. The objective is to statistically sample the entire habitat,
unlike the commercial fleet that goes where the fish are in greatest abundance. With acoustics,
the ship can continuously sample along the track to obtain more data, increasing the statistical
significance. Calibration factors allow the conversion of acoustic backscatter to biomass.
Generally, acoustic surveys also employ selective fishing to verify species identification and
obtain information about the size, health, and reproductive status of the fish. These, and other
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less common techniques, are all ship-based and are limited to the speed of a surface vessel, and
these long surveys can be very expensive.

1.1 Airborne Lidar for Fishery Surveys

Increasing the speed at which surveys can be conducted requires aerial surveys,4,5 which have
mostly been done visually or with camera systems. However, fish can be detected much deeper in
the water column by lidar,6 and airborne lidar has been explored for fishery surveys in oceans7–10

and lakes.11,12 Related applications of airborne lidar include mapping marine debris,13,14 plank-
ton layers,15–17 bubbles,18,19 internal waves14 in the ocean, underwater thermal vents,20 and water
turbidity.21 Initial research has started assessing the potential of spaceborne lidars for oceanic
profiling of plankton and other biological and particulate matter.22–30

All airborne lidar applications produce large amounts of data. Unlike lidar bathymetry31–33

and ocean lidar profiling,21,34 most lidar data for fishery surveys do not contain physics-based
features that can be used to easily identify fish or other objects of interest. As a result, identifying
and marking the positions of fish in lidar images can take 10 to 20 min per hour of lidar data.
Data with no fish are faster to process than data with large numbers of fish, but that is about
average. As a concrete example, the Gulf of Mexico survey10 analyzed in this work contains
∼55 h of lidar data; visually inspecting this data took about 14 h. Consequently, there is a need
for automated methods that can identify regions of fish and reduce the amount of data that
requires manual inspection.

Previous efforts to automate lidar processing for fisheries have used a combination of spatial
filtering and thresholding to locate schools of mackerel35 and swarms of zooplankton.36 These
have been limited by the difficulty in optimizing filter parameters and threshold levels for the
situation of interest. The situation of interest includes the return strength and spatial variability of
the background water return, as well as the strength and spatial characteristics of the target
species. Due to the limitations of previous efforts, visual inspection is still the state of the art.
In an effort to develop an automated processing technique, this paper investigates the feasibility
of using supervised machine learning to identify regions containing fish.

1.2 Supervised Learning on Imbalanced Data

Supervised learning is a type of machine learning that learns how to map input data to output
labels by training on example input-output pairs. As a result, supervised algorithms can be
trained to minimize misclassification rates. Unsupervised algorithms, in contrast, are designed
to find associations between input data and possible output groups. Without a knowledge of
class labels, the training procedure cannot be directly optimized for prediction accuracy.37

For this purpose, our work focuses on supervised learning techniques. The wide variety of
available supervised learning algorithms makes it infeasible to perform an exhaustive search.
Therefore, we focus on comparing results obtained from a few well-known algorithms—support
vector machines (SVM),38 decision trees,39 linear discriminant analysis (LDA),40 and neural
networks41—and RUSBoost,42 an algorithm designed specifically for imbalanced data.

We acknowledge that the ability of supervised classifiers to produce more accurate results
comes at a cost: they require labeled data for the training process. Because of this, it is impossible
to develop a completely autonomous detection system using only supervised classification. Prior
to completing the training process, some data need to be manually inspected and labeled, so the
classifiers have a ground truth to learn from. For example, during a multi-day lidar campaign, a
human may manually inspect the lidar results from the first day. The labels from the first day can
then be used to create a classifier for automated detection during subsequent days. It is also
important to note that, since ground truth labels are prone to human error, the reported classi-
fication results may be imperfect. However, this does not always have negative consequences.
For example, classifiers sometimes find a fish that a human missed. Such situations negatively
affect performance metrics, but ultimately result in more fish detections.

When training on data with a large class imbalance, such as lidar data from fishery surveys in
which there are very few fish examples, many traditional machine learning techniques will fail to
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identify the minority class(es).43–45 Consider one formulation of the optimization problem that
must be solved for a non-separable SVM:37

EQ-TARGET;temp:intralink-;sec1.2;116;711 min kβk subject to

�
yiðxTi β þ β0Þ ≥ 1 − ζi ∀ i
ζi ≥ 0;

P
ζi ≤ constant

;

where β and β0 are the normal vector and y-intercept of the optimized hyperplane (decision
boundary), respectively, xi is measurement vector i with associated binary label yi ¼ �1, and
ζi is a slack variable that allows for individual points to be on the wrong side of the hyperplane.
It is worth noting that, in this formulation, each input vector exerts the same amount of force on
the hyperplane. This can cause the majority class to overwhelm the minority class, resulting in
a classifier that skews heavily toward classifying new points as part of the majority class.

Several techniques have been developed to improve results in situations in which the classes
are imbalanced.46 One common method is to weight the classes according to their distributions
by imposing a higher cost for misclassifying vectors from the minority class. Two other methods
are sampling and boosting.47 RUSBoost,42 which is used in this paper, combines random under-
sampling and boosting to improve classification performance on imbalanced data. The primary
methods used to deal with class imbalance in this study are undersampling and class weighting,
as they can both be applied to existing classification algorithms without modification.

2 Lidar Systems

Currently, there are no commercial lidar systems available for this application. Fish have been
detected by commercial bathymetric lidars but only as an artifact that must be eliminated during
processing.48 Terrestrial lidars not designed for bathymetry typically use laser wavelengths that
do not penetrate significantly into water. However, the technology for a lidar to detect subsurface
fish and plankton layers is much simpler than a bathymetric lidar, and several have been con-
structed in the United States,8,11,49 Russia,50–52 and China.53,54 Two of these are considered in
this paper.

2.1 NOAA Lidar

The NOAA lidar is a down-looking, aircraft-based instrument. The light source for the trans-
mitter of the lidar is a frequency-doubled, Q-switched Nd:YAG laser. The laser itself emits
linearly polarized, 532-nm light in 12-ns pulses at a repetition rate of 30 Hz. The laser light is
directed through a polarization beam splitting cube (103 polarization extinction ratio), beam-
steering mirrors, and a negative lens to ensure that the light reaching the water surface is within
the American National Standards Institute standards for exposure to laser light.55 The pulse
energy at the output of the transmission optics is 100 mJ. On the receiver side, the lidar employs
two channels for measuring the return light: one for the component of the return with the same
polarization as the transmitter (co-polarized return) and the other for its orthogonal polarization
(cross-polarized return). For each channel, the received light is collected by a telescope, filtered
by a 1-nm bandwidth interference filter, and detected by a photomultiplier tube (PMT). The 17-
mrad field of view of each telescope is set to match the transmitter beam divergence. A plastic-
film linear polarizer is installed at the front of each telescope to select the appropriate linear
polarization state. The photomultiplier signal is amplified through a logarithmic amplifier and
digitized at 1 GHz. For this study, the lidar was mounted in the floor of a small twin-engine
aircraft and flown at an altitude of ∼300 m over the ocean surface. The lidar system was pointed
∼15 deg from nadir to minimize contribution from air-water interface reflections.

2.2 MSU Lidar

The MSU lidar was developed in 2014 and shares many similarities with the NOAA lidar. It uses
a 532-nm pulsed Nd:YAG laser with a 26.8-mJ pulse energy and 100-Hz repetition frequency.
The lidar has a selectable 5 or 15 mrad FOV, which at the typical flight altitude of 300 m gives a
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1.5- or 4.5-m diameter spot size, respectively. Two orthogonally polarized receiver telescopes are
used to simultaneously measure the co- and cross-polarization return; PMT and synchronized
800 MSPS digitizers convert the returned optical energy to digital numbers, which are stored for
later analysis.11 This lidar is used extensively in Yellowstone National Park to map lake trout
spawning locations;12 it recorded the first known lidar detection of an underwater thermal vent20

and characterized the lidar attenuation coefficient.21

3 Datasets

Two airborne lidar datsets were used in this study: one comprising lake trout in Yellowstone
lake12 and the other comprising flying fish, schools of unidentified fish, jellyfish, and plankton
in the Gulf of Mexico.10

3.1 Yellowstone Lake Dataset

Discovered in 1994,56 invasive lake trout are now the top carnivore in Yellowstone Lake,
Wyoming57,58—threatening the ecological balance of Yellowstone National Park. The
Yellowstone Lake survey12 was conducted to determine if airborne lidar could be used to detect
the invasive lake trout. This dataset was selected for this work due to the application’s ecological
significance and availability of the data.

The survey was conducted with daytime flights during lake trout spawning season in 2015
and 201612 using the airborne lidar system described in Sec. 2.2. Roddewig et al.12 manually
identified fish in the lidar data, which we use as ground truth labels. A summary of the
Yellowstone Lake dataset is shown in Table 1, and a representative example of lidar data is
shown in Fig. 1.

Table 1 Summary of data collected at Yellowstone Lake,11 showing the number of
instances (lidar shots), dimensions (samples per shot), and instances containing
fish. The percentage of fish instances are shown in parentheses. A single fish often
shows up in multiple adjacent instances.

Instances Dimensions Fish instances

2015 Flight 108778 2048 401 (0.369%)

2016 Flight 192201 2048 227 (0.118%)
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Fig. 1 Example cross-polarized lidar data from Yellowstone Lake. Darker values indicate higher
reflected radiance; radiance values were compressed to increase contrast. The light patch indi-
cated by the yellow arrow is the surface of the water. The start of an underwater shelf is indicated
by the orange dashed ellipse. The red ellipse highlights a typical fish hit, which appears as a
vertical spike above the shelf.
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3.2 Gulf of Mexico Dataset

The Gulf of Mexico study10 was an investigation into the distribution of near-surface fish
after the Deepwater Horizon oil spill. Of particular interest was any effect on the distribution
of flying fish, which were thought to be vulnerable because they pass through the oil floating on
the surface. This dataset was selected for this work because flying fish created a large number of
individual fish returns.

The survey was conducted over 12 days with images being taken both at night and during the
day, using the lidar system described in Sec. 2.1. The data contained instances of flying fish,
schools of fish, jellyfish, and plankton layers, which were manually labeled in a previous study.10

A summary of the Gulf of Mexico dataset is shown in Table 2, and a representative example of
lidar data is shown in Fig. 2.

The original data was in the form of 1000 x 1000 pixel PNG images, with multiple images for
each day; for each PNG image, object labels were denoted by start and end columns in the image.
The original data were transformed such that each day became a separate MATLAB mat file.
The labels were placed in a matrix, with each row corresponding to one of the four different
objects of interest and each column indicating whether an object was present. To be more con-
sistent with the Yellowstone Lake data, plankton labels were ignored, and the fish, fish school,
and jellyfish labels were combined into a single binary label.

4 Methods

Two sets of experiments were run on the Yellowstone Lake and Gulf of Mexico datasets: one
with classifiers that were trained on the first day of each dataset and tested on the remaining days,
and one with classifiers that were trained on 80% of each dataset and tested on the remaining
20%. The first experiment was intended to simulate a multi-day campaign in which the research-
ers want to train a classifier after the first day and then use that classifier to predict fish regions
during subsequent days. Although the second experiment required more manually labeled data

Table 2 Summary of data collected over the Gulf of Mexico,10 showing the number of instances
(lidar shots), dimensions (samples per shot), and instances containing fish, schools of fish, jelly-
fish, and plankton layers, respectively. The percentages of each instance type are shown in paren-
theses. Objects of interest often occur across multiple adjacent instances. Some instances contain
multiple types of objects of interest. Day 11 is excluded due to the lack of ground truth labels.

Instances Dimensions
Fish

instances
Fish school
Instances

Jellyfish
instances

Plankton layer
instances

All fish
instances

Day 1 747284 1000 7232 (0.968%) 217 (0.0290%) 0 106854 (14.3%) 7449 (0.997%)

Day 2 469363 1000 383 (0.0816%) 325 (0.0692%) 69
(0.0147%)

44633 (9.51%) 777 (0.166%)

Day 3 637132 1000 576 (0.090%) 103 (0.0162%) 0 74951 (11.8%) 679 (0.107%)

Day 4 501563 1000 236 (0.047%) 286 (0.057%) 36
(0.00718%)

41812 (8.34%) 588 (0.111%)

Day 5 255121 1000 314 (0.123%) 76 (0.0298%) 0 8800 (3.45%) 390 (0.153%)

Day 6 509049 1000 226 (0.0444%) 87 (0.0171%) 0 8541 (1.68%) 313 (0.0615%)

Day 7 370976 1000 630 (0.170%) 31 (0.00836%) 0 20502 (5.53%) 661 (0.178%)

Day 8 648664 1000 1919 (0.296%) 126 (0.0194%) 0 9087 (1.40%) 2045 (0.315%)

Day 9 574674 1000 697 (0.121%) 618 (0.108%) 0 102382 (17.8%) 1315 (0.229%)

Day 10 563762 1000 163 (0.0289%) 67 (0.0119%) 0 27754 (4.92%) 230 (0.0408%)

Day 12 682304 1000 494 (0.0724%) 206 (0.0302%) 0 5857 (0.858%) 700 (0.103%)
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than the first experiment, it can be used to train a classifier for subsequent campaigns in the same
location using the same lidar instrument; the second experiment also has the potential to find fish
that the manual labels missed.

The following sections describe the algorithms, evaluation metrics, and procedure used in
the experiments.

4.1 Classification Algorithms

As stated in Sec. 1.2, the following classifiers were used in the experiments: SVM,38 decision
trees,39 LDA,40 neural networks,41 and RUSBoost.42 SVM, decision trees, and LDA are all
common classifiers, so we refer the reader to the corresponding references for more details.
The neural network architecture that was used is shown in Fig. 3.

Unlike the other algorithms used in this paper, RUSBoost is an ensemble technique specifi-
cally designed for imbalanced learning. RUSBoost introduces random undersampling into
the AdaBoost.M260 boosting algorithm, with the goal of providing better performance than
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(2 outputs)
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Fig. 3 MATLAB’s fitcnet neural network architecture. The size of the first fully connected layer and
the activation function were tuned, as described in Sec. 4.4.1. The second fully connected layer
has 2 outputs, corresponding to the 2 classes—“no fish” and “fish.”
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Fig. 2 Example cross-polarized lidar data from the Gulf of Mexico. (a) Data from day 2. Hollow
jellyfish aggregations59 are annotated with red ellipses, and fish schools are highlighted with yel-
low dotted ellipses. (b) Data from day 1. The yellow triangles indicate lidar shots in which a single
fish was manually found and labeled. The colormap’s maximum was scaled to increase contrast.
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undersampling and boosting provide individually. Concretely, RUSBoost randomly undersam-
ples the majority class at the beginning of each iteration of AdaBoost. Random undersampling
and boosting are described in the following paragraphs.

4.1.1 Random undersampling

Random undersampling44 is a common method for working with imbalanced datasets, as it
is a simple way to help balance class proportions. Given a dataset S0 ¼ Smaj ∪ Smin composed
of a majority class Smaj ⊂ S0 and a minority class Smin ⊂ S0, random undersampling removes
a random subset Sremove ⊂ Smaj of the majority class to create a new dataset S1 ⊂ S0 ¼
ðSmaj \ SremoveÞ ∪ Smin. Random undersampling’s main drawback is that removing examples
from the majority class results in loss of information;61 however, random undersampling has
been show to work well in practice.62 In addition to reducing class imbalance, random under-
sampling also reduces training time by reducing the dataset size; given the size of the Gulf
of Mexico dataset in Sec. 3.2, reducing training time is advantageous.

4.1.2 Boosting

Boosting algorithms are iterative algorithms that increase the weights of misclassified points and
decrease the weights of correctly classified points after each iteration.47 This increases the prob-
ability that the misclassified examples will be correctly classified in subsequent iterations.
AdaBoost60 is one of the most common boosting techniques. In each iteration, Adaboost trains
a weak learner and updates the weights of samples based upon the weak learner’s hypothesis.
After all iterations are done, the weak learners’ hypotheses are weighted and combined to form
the final hypothesis.

All of the classifiers used in this study are available in MATLAB R2021a. The classifiers
were implemented with the following functions: fitclinear for the SVM, fitcdiscr for LDA,
fitctree for the decision tree, fitcnet for the neural network, and fitcensemble for RUSBoost.
The base learner for RUSBoost was a decision tree. By default, MATLAB’s implementation
of RUSBoost undersamples the majority class to give a perfectly balanced class ratio.

4.2 Evaluation Metrics

In this work, classification performance was measured with recall, precision, and the F3 score,
which is a particular combination of recall and precision. All of these metrics range between
0 and 1, with 1 being the best. These metrics can be understood in terms of the confusion matrix,
shown in Fig. 4.
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Fig. 4 Confusion matrix terminology. “No fish” is considered the negative class, and “fish” is
considered the positive class.
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Recall is a measure of how many true fish were correctly predicted, and it is defined as

EQ-TARGET;temp:intralink-;e001;116;723recall ¼ TP
TPþ FN

: (1)

A recall of 1 means that all fish were identified.
Precision, on the other hand, is a measure of how many identified fish were actually fish.

Precision is defined as

EQ-TARGET;temp:intralink-;e002;116;646precision ¼ TP
TPþ FP

: (2)

A high precision value means the classifier did not mislabel many lidar shots as containing fish,
whereas a low precision value means that the classifier mislabeled many non-fish as fish.

Since there are very few fish in the datasets, finding the majority of the fish is more important
than accidentally classifying non-fish as fish; however, having a very low precision value is not
desirable, as that would mean researchers would have to manually inspect and discard large
amounts of unimportant data.

The Fβ score is the weighted harmonic mean of precision and recall that weights recall β
times higher than precision. Since recall is more important than precision in our application, the
F3 score is used, and it weights recall three times higher than precision. The Fβ and F3 scores are
defined as

EQ-TARGET;temp:intralink-;e003;116;482Fβ ¼ ð1þ β2Þ precision · recall
β2 · precisionþ recall

; (3)

EQ-TARGET;temp:intralink-;e004;116;426F3 ¼ 10 ·
precision · recall

9 · precisionþ recall
: (4)

The F3 score provides a single metric that can be used to evaluate classification performance.
Recall, precision, and F3 score were computed per-shot and per-region. Per-shot metrics

were computed directly using the ground truth and predicted labels for each shot. For the
per-region metrics, labels were grouped into 1000-shot windows. For the ground truth labels,
a region was considered a region of interest (ROI) if at least one fish label was present. For the
predicted labels, the number of fish labels needed for an ROI was tuned as described in
Sec. 4.4.1.

4.3 Preprocessing

Since this paper focuses on introducing machine learning to fish detection in airborne lidar data,
we decided to perform minimal preprocessing on the raw data; most of the preprocessing steps
used here are standard practice in previous studies.8,12 No feature extraction was performed.

Figure 5 shows an overview of the preprocessing procedure. The first two preprocessing
steps—surface detection and correction—were performed to compensate for changes in airplane
elevation and ensure that a given row in the lidar image nominally corresponded to a given water
depth. The depth adjustment step was performed to reduce the dimensionality of the data and to
focus on regions most likely to contain meaningful lidar data. Save for the surface detection and
smoothing, all processing was performed on the cross-polarized data because it provides better
contrast between fish and the background water column.

4.3.1 Surface detection and smoothing

The surface of the water in each lidar shot was detected by finding the maximum return in the
copolarized channel and then moving up toward the lidar until 25% of the maximum return was
reached:

EQ-TARGET;temp:intralink-;e005;116;90sraw½m� ¼ max
n

fnjyn½m� ≤ 0.25 · maxðy½m�Þg; (5)
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where sraw½m� is the surface index for shot m, y½m� is the vector of return values for shot m, and
yn½m� is return value at range bin n. This is similar to what was done in a previous study by
Roddewig et al.11 As noted in the previous study,11 this algorithm might fail when the volumetric
scattering from the water below the surface is stronger than the surface return;63 however, the
lidar instruments used in this study are not designed for high-accuracy bathymetry, so an occa-
sional error in surface detection is acceptable. Previous studies52,64,65 have shown that the surface
return preserves polarization, which is why the copolarized channel was used for surface
detection.

Upon visual inspection, the surface location detected by Eq. (5) occasionally varied more
drastically between adjacent shots than would be expected. To compensate for this, the surface
was smoothed with a 10-tap moving average filter:

EQ-TARGET;temp:intralink-;e006;116;407ssmooth½m� ¼ 1

10

X9
l¼0

sraw½m − l�: (6)

A filter length of 10 was chosen visually to give a line that smoothly followed the surface.
The Yellowstone data contained atmospheric returns that were incorrectly detected as the

water surface. To overcome this, the first 600 and 512 range bins were skipped during surface
detection in the 2015 and 2016 data, respectively. For the sake of simplicity, the number of range
bins to skip was chosen via visual inspection for each dataset.

4.3.2 Surface correction

Once the surface was found, each lidar shot was shifted up so the surface started at the first row,
and then the lidar shot was padded with zeros at the bottom, maintaining the original number of
rows. Surface correction was performed to ensure that each row in the image corresponded to a
specific distance beneath the surface, regardless of the altitude of the aircraft. Thus the surface
correction allowed each row to be interpreted by the machine learning algorithm as a specific
feature, in this case, the intensity of the lidar return corresponding to a specific depth in the water.

4.3.3 Depth adjustment

After surface correction, the height of the image was reduced based on the penetration depth of
the lidar and the expected fish depth. In the Yellowstone Lake data, the image was reduced to 60
rows, which corresponded to a depth of ∼8.65 m. The Gulf of Mexico data were reduced to 150
rows, which corresponded to a depth of ∼17.3 m. The depth adjustment accomplished three
main purposes. First, the adjustment reduced the dimensionality of the problem, which decreases
the complexity of the machine learning algorithms. Second, the adjustment considered the physi-
cal limitations of the depth penetration of the lidar systems used in this study,8,21 as well as the

Preprocessing

Surface 
detection

and
smoothing

Surface 
correction

Depth 
adjustment

Machine
learning

Fig. 5 Data preprocessing overview. The original lidar data (far left) were first run through an algo-
rithm that detected and smoothed the surface of the water (dashed red line). Once the surface was
detected, surface correction was applied to compensate for changes in airplane elevation, and
data above the surface of the water were removed. Finally, the depth of the image was adjusted
based on the lidar’s penetration depth or prior knowledge about the expected depth of fish.
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expected physical locations of fish. Finally, truncating the bottom rows ensured that the algo-
rithm was not influenced by the manually padded zeros introduced in the surface correction
process. An example of Yellowstone data after preprocessing is shown in Fig. 6.

4.4 Training Procedure

After preprocessing was performed, the cross-polarized data were split into training and testing
sets. Rather than randomly selecting individual shots for the training and testing sets, the data
were split by ROI; we did this for two reasons: (1) since fish often span multiple shots, we did not
want to split a single fish hit between the training and testing sets; and (2) splitting the data by
ROI allows us to tune the number of predicted labels required for a region to be considered an
ROI. The data splitting procedure was the same for both the Yellowstone and Gulf of Mexico
datasets.

When creating the training and testing data, each day was split into regions of 1000 adjacent
shots. This matches the typical window size used during visual analysis. In general, the last
region in each day contained less than 1000 shots because the number of shots in the day was
not a multiple of 1000.

For experiments that used the first day as training data, the first day was split by region into
3 folds for cross validation. The folds were randomly selected, and they were stratified such that
the class proportions in each fold were approximately the same.

For the experiments that randomly selected the training and testing data, 80% of the regions
were randomly selected as training data, while the remaining 20% were put into the testing set.
The training and testing sets were stratified such that the class proportions in each were approx-
imately the same. The training set was then split by region into three folds for cross validation.
The regions in each fold were randomly selected, and the folds were stratified to maintain class
proportions.

4.4.1 Parameter tuning

Parameter tuning was performed using three-fold cross validation on the training sets. In addition
to tuning each classifier’s hyperparameters, we also tuned the undersampling percentage and
the number of predicted labels needed for a region to be considered an ROI.

Undersampling. Using the default parameters for each classifier, we tuned the undersam-
pling ratio by performing a grid search between [0, 0.95] in increments of 0.05. For each grid
point, the classifiers were trained using three-fold cross validation. The F3 score was recorded
for each fold; the scores were then averaged to give an F3 score for the grid point. The under-
sampling ratio that resulted in the maximum F3 score was chosen for each classifier.
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Fig. 6 Lidar data from Fig. 1 after preprocessing. The height-corrected surface of the water is
indicated by the yellow arrow, and a fish hit is highlighted by the red ellipse. Radiance values
were compressed to increase contrast.
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Model hyperparameters. After tuning the undersampling ratios, we tuned each
classifier’s hyperparameters using MATLAB’s Bayesian optimization function, bayesopt. For
classifiers that supported a cost matrix, the cost of missing a fish was also tuned. Table 3
shows the hyperparameters that were tuned for each classifier. We used the following bayesopt
settings:

1. IsObjectiveDeterministic = true
2. AcquisitionFunctionName = expected-improvement-plus
3. MaxObjectiveEvaluations = 20

When a classifier achieved a lower F3 score after hyperparameter tuning, the model param-
eters were set back to their defaults and only the cost of missing a fish was tuned. When tuning
hyperparameters, we undersampled the cross validation training sets by the optimal ratios found
via the previous grid search.

ROI label tuning. As discussed in Sec. 5, the classifiers predicted many false positives.
Often, the false-positive predictions were in regions that contained fish. When assessing the
classifier’s ability to correctly predict fish-containing regions of interest, one needs to know
when to flag a region as a predicted ROI. Toward this end, we tuned the number of predicted
fish labels per region that are needed to flag a region as a true positive. After training the tuned
classifiers from the previous steps on the cross validation training sets, the number of positive
labels needed per region was swept between 1 and 100. The number of labels that resulted in the
highest average F3 score was chosen for each classifier.

5 Results

Experimental results obtained on both experiments are reported below for both datasets.
Due to space considerations, performance metrics are only reported for the ROI results. The
per-shot results generally identified extra fish per region; a representative example is shown
in Sec. 6.

Table 3 Hyperparameter search ranges for the classifiers used in this study. Most of the model-
specific parameter search ranges were set to the default search ranges in MATLAB R2021a.
jSj indicates the number instances in the dataset. A † indicates that the search values were
logarithmically spaced. b·c is the floor function.

SVM LDA Neural net

Lambda 1
jSj ½10−5;105�† Delta ½10−6;103�† Layer size ½10;50� ∈ Z

Regularization {ridge, lasso} Gamma [0, 1] Activation {relu, sigmoid,
tanh}

FN cost ½1;20� ∈ Z FN cost ½1;20� ∈ Z — —

Decision tree RUSBoost — —

Max number
of splits

½1; jSj − 1�† ∈ Z Learning cycles ½10;500�† ∈ Z — —

Min leaf size ½1; bjSj∕2c�† ∈ Z Learning rate ½10−3;1�† — —

Split criterion {gdi, deviance} Max number of splits ½1; jSj − 1�† ∈ Z — —

FN cost ½1;20� ∈ Z Min leaf size ½1; bjSj∕2c�† ∈ Z — —

— — Split criterion {gdi, deviance} — —

— — FN cost ½1;20� ∈ Z — —
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5.1 First-Day Training Set

As was discussed in Sec. 4, the first set of experiments were designed to simulate the real-world
scenario of training a classifier after the first flight and then using that classifier during sub-
sequent flights during the same campaign. This section shows the results of those experiments
on the Yellowstone Lake and Gulf of Mexico datasets.

5.1.1 Yellowstone Lake

Table 4 shows the hyperparameters obtained by following the procedure in Sec. 4.4.1 using the
2015 Yellowstone Lake flight as the training data. The SVM never predicted any fish during
hyperparameter tuning, so the default parameter values were used for the final training.

Figure 7 shows the ROI cross validation results obtained on the 2015 flight. The parameters
in Table 4 were used when training the classifiers. As seen in Fig. 7, the SVMwas uninformative.
LDA, the neural network, and RUSBoost properly identified all fish-containing regions. The
decision tree only missed one fish-containing region.

The neural network achieved the highest F3 score during cross validation; consequently, in a
real-world scenario, the neural network would be chosen to make predictions during the follow-
ing days of the campaign. However, as seen in Fig. 8 and Table 5, the neural network did not
achieve the highest F3 score on the testing data (2016 flight). LDA achieved the best F3 score on
the testing data, but achieved the second best score on the training data. As seen in Table 5, LDA
did not discard as many regions as the neural network did; compared with LDA, the neural
network would have saved manual analysis time in a real-world campaign.

5.1.2 Gulf of Mexico

Table 6 shows the hyperparameters obtained using day 1 of the Gulf of Mexico dataset as
the training data. Once again, as seen in Fig. 9, the SVM was nearly uninformative. The cross
validation performances of the other classifiers, however, are more varied than they were for

Table 4 Hyperparameter values for the first day experiment on Yellowstone Lake.

SVM LDA Neural net

Lambda 9.193 × 10−6a Delta 0.0007181 Layer size 33

Regularization ridgea Gamma 0.99884 Activation relu

FN cost 1a FN cost 20 Undersampling 0.9

Undersampling 0 Undersampling 0.45 # labels for ROI 9

# labels for ROI 1 # labels for ROI 25 — —

Decision tree RUSBoost

Max number of splits 2 Learning cycles 11 — —

Min leaf size 53 Learning rate 0.59087 — —

Split criterion gdi Max number of splits 2 — —

FN cost 19 Min leaf size 3 — —

Undersampling 0.95 Split criterion gdi — —

# labels for ROI 43 FN cost 16 — —

— — Undersampling 0.45 — —

— — # labels for ROI 43 — —

aIndicates that the parameter values were left at their default values because hyperparameter tuning did not
improve classification results.
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Fig. 8 ROI holdout results for the 2016 Yellowstone Lake flight.

Table 5 F 3 scores achieved on the cross validation and holdout sets for the first day experiment
on the Yellowstone Lake dataset. Additionally, the percent of regions that were discarded by each
classifier are reported. The best F 3 scores are marked in bold.

SVM LDA
Neural
network

Decision
tree RUSBoost

Cross validation F 3 0 0.7692 0.7965 0.6838 0.7377

Holdout F 3 0 0.3968 0.3333 0.3922 0.3876

% regions discarded 100 58.03 61.14 70.47 56.48
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Fig. 7 ROI cross validation results for the 2015 Yellowstone Lake flight.
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the Yellowstone experiment in Sec 5.1.1. As seen in Fig. 9 and Table 7, RUSBoost achieved
the highest F3 score on the training data; however, this came at the cost of misclassifying 242
(87.1%) regions that did not contain fish. The decision tree, which had the second highest
F3 score, only misclassified 147 (52.9%) regions that did not contain fish. It is worth noting
that day 1 contains more fish-containing regions than fishless regions, in spite of the fact that fish
make up only 0.997% of the dataset (Table 2).

On the testing set (days 2–12), the decision tree achieved a higher F3 score than RUSBoost
did, as shown in Table 7. This is because the tree achieved a higher precision, which can be seen

Table 6 Hyperparameter values for the first day experiment on Gulf of Mexico dataset.

SVM LDA Neural net

Lambda 8.5538 × 10−8 Delta 1.1273 × 10−6 Layer size 42

Regularization lasso Gamma 0.81328 Activation tanh

FN cost 11 FN cost 14 Undersampling 0.95

Undersampling 0 Undersampling 0.8 # labels for ROI 1

# labels for ROI 46 # labels for ROI 1 — —

Decision tree RUSBoost

Max number of splits 693 Learning cycles 349 — —

Min leaf size 347 Learning rate 0.77313 — —

Split criterion gdi Max number of splits 735 — —

FN cost 20 Min leaf size 4 — —

Undersampling 0.8 Split criterion gdi — —

# labels for ROI 1 FN cost 16 — —

Undersampling 0.8 — —

# labels for ROI 1 — —
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Fig. 9 ROI cross validation results for day 1 of the Gulf of Mexico dataset.
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in Fig. 10; however, this came with the tradeoff of incorrectly identifying an additional
572 regions as containing fish, which would result in more manual analysis time. Ultimately,
RUSBoost’s performance was not significantly worse than the decision tree’s performance and
thus would still have been useful during a real-world campaign.

5.2 Randomized Training Set

The second set of experiments followed a more traditional approach: the training and test sets
were randomly chosen with an 80/20 split. Compared with the “first day” experiments in
Sec. 5.1, the training sets for the following experiments contained more data and thus more
examples of fish. Generally, training with more data produces more accurate models. The clas-
sifiers trained in these experiments could be used in future campaigns that use the same lidar
instrument at the same location as the previous campaign. The results of these experiments are
reported for both datasets in the following sections.

5.2.1 Yellowstone Lake

Table 8 shows the hyperparameters obtained by following the procedure in Sec. 4.4.1. The SVM
did not perform better after hyperparameter tuning, so the default parameters were used. RUSBoost
also did not perform better after the initial hyperparameter tuning. The RUSBoost hyperparameters
were then set to defaults, and the false-negative cost was tuned; this resulted in a higher F3 score
than using default parameters with a false-negative cost equal to 1.

Table 7 F 3 scores achieved on the cross validation and holdout sets for the first day experiment
on the Gulf of Mexico dataset. Additionally, the percent of regions that were discarded in the test-
ing data by each classifier are reported. The best scores F 3 scores are marked in bold.

SVM LDA
Neural
network

Decision
tree RUSBoost

Cross validation F 3 0 0.3210 0.5568 0.7911 0.9143

Holdout F 3 0 0 0.4354 0.7983 0.7419

% regions discarded 100 100 73.1915 12.7660 26.8085
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Fig. 10 ROI holdout results for days 2–12 of the Gulf of Mexico dataset.
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Figure 11 shows the cross validation results obtained using classifiers trained with the param-
eters in Table 8. As shown in Table 9, LDA achieved the highest F3 score, followed by RUSBoost.
RUSBoost, however, achieved a perfect recall, whereas LDA missed one fish-containing region.

Interestingly, as seen in Fig. 12, LDA missed all fish regions in the testing set, whereas
RUSBoost found all of them. The neural network was the only other classifier to find any fish

Table 8 Hyperparameter values for the randomized training set experiment on the Yellowstone
Lake dataset.

SVM LDA Neural net

Lambda 4.1497 × 10−6a Delta 0.0014063 Layer size 41

Regularization ridgea Gamma 0.43906 Activation tanh

FN cost 1a FN cost 18 Undersampling 0.9

Undersampling 0 Undersampling 0.45 # labels for ROI 16

# labels for ROI 1 # labels for ROI 31 — —

Decision tree RUSBoost

Max number of splits 41 Learning cycles 100a — —

Min leaf size 2 Learning rate 1a — —

Split criterion deviance Max number of splits 1a — —

FN cost 18 Min leaf size 1a — —

Undersampling 0.95 Split criterion gdia — —

# labels for ROI 100 FN cost 9 — —

— — Undersampling 0.45 — —

— — # labels for ROI 68 — —

aIndicates that the parameter values were left at their default values because hyperparameter tuning did not
improve classification results.

no fish fish
Predicted Class

no fish

fish

T
ru

e 
C

la
ss

SVM

12

230 100.0%

100.0%

5.0%
95.0%

no fish fish
Predicted Class

no fish

fish

T
ru

e 
C

la
ss

LDA

1

43

11

187 18.7%

8.3%

81.3%

91.7%

0.5%
20.4%
79.6%

99.5%

no fish fish
Predicted Class

no fish

fish

T
ru

e 
C

la
ss

Neural net

2

49

10

181 21.3%

16.7%

78.7%

83.3%

1.1%
16.9%
83.1%

98.9%

no fish fish
Predicted Class

no fish

fish

T
ru

e 
C

la
ss

Tree

1

66

11

164 71.3% 28.7%

8.3%91.7%

0.6%
14.3%
85.7%

99.4%

no fish fish
Predicted Class

no fish

fish

T
ru

e 
C

la
ss

RUSBoost
70

12

160 69.6% 30.4%

100.0%

14.6%
85.4%

100.0%

Fig. 11 ROI cross validation results for the Yellowstone Lake randomized training set.
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regions. If the best classifier was chosen based purely upon the cross validation F3 scores,
LDA would have been chosen, only to prove unsuccessful during testing.

5.2.2 Gulf of Mexico

Table 10 shows the hyperparameters obtained via tuning on the training set. The default LDA
hyperparameters performed better than all of the hyperparameters examined during tuning, so
only the false-negative cost was tuned. Figure 13 and Table 11 show that the decision tree
achieved the highest F3 score on the training set, while RUSBoost performed second best.
As in the first-day experiment on the Gulf of Mexico data, the decision tree’s performance came
at the cost of marking more fishless regions as containing fish, which would increase the time
required for manual inspection.

Looking at the holdout results in Fig. 14 and Table 11, we see that the decision tree out-
performs RUSBoost again, with all other classifiers obtaining significantly lower F3 scores.
In line with the cross validation results, the decision tree falsely classified 88.5% of fishless
regions in the testing set as containing fish. RUSBoost misclassified 63.3% of fishless regions,
while the neural network only misclassified 8.5% of fishless regions. The neural network’s low
false-positive rate is beneficial for reducing the amount of manual inspection required, but this
came with the tradeoff of missing more than half of the fish-containing regions.

Table 9 F 3 scores achieved on the cross validation and holdout sets for the randomized train/test
split experiment on the Yellowstone Lake dataset. Additionally, the percent of regions that were
discarded in the testing data by each classifier are reported. The best F 3 scores are marked
in bold.

SVM LDA
Neural
network

Decision
tree RUSBoost

Cross validation F 3 0 0.6790 0.5988 0.5946 0.6316

Holdout F 3 0 0 0.3125 0 0.5263

% regions discarded 100 75 76.67 96.67 66.67
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Fig. 12 ROI holdout results for the Yellowstone Lake randomized testing set.
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6 Discussion

As seen in Sec. 5, no classifier performed best across all experiments, and the classifier that
performed best during cross validation often did not perform best on the testing set. This high-
lights the fact that classifiers are not guaranteed to perform well on new data; in the context of the
lidar data analyzed in this paper, reduced performance on the testing data could be due to the fact

Table 10 Hyperparameter values for the randomized training set experiment on the Gulf of
Mexico dataset.

SVM LDA Neural net

Lambda 3.8629 × 10−9 Delta 0a Layer size 44

Regularization lasso Gamma 0a Activation tanh

FN cost 20 FN cost 20 Undersampling 0.95

Undersampling 0 Undersampling 0.8 # labels for ROI 1

# labels for ROI 46 # labels for ROI 1 — —

Decision tree RUSBoost — —

Max number of splits 4835 Learning cycles 401 — —

Min leaf size 7 Learning rate 0.79965 — —

Split criterion gdi Max number of splits 200 — —

FN cost 20 Min leaf size 11 — —

Undersampling 0.8 Split criterion Gdi — —

# labels for ROI 1 FN cost 6 — —

— — Undersampling 0.8 — —

— — # labels for ROI 1 — —

aIndicates that the parameter values were left at their default values because hyperparameter tuning did not
improve classification results.

no fish fish
Predicted Class

no fish

fish

T
ru

e 
C

la
ss

SVM

983

1098

492

2283 67.5%

33.4%

32.5%

66.6%

69.9%
30.1%

30.9%
69.1%

no fish fish
Predicted Class

no fish

fish

T
ru

e 
C

la
ss

LDA

1435

102

40

3279

2.7%

3.0%97.0%

97.3%

69.6%
30.4%

28.2%
71.8%

no fish fish
Predicted Class

no fish

fish

T
ru

e 
C

la
ss

Neural net

870

470

605

2911

41.0%

13.9%

59.0%

86.1%

23.0%
56.3%
43.7%

77.0%

no fish fish
Predicted Class

no fish

fish

T
ru

e 
C

la
ss

Tree
498

69 1406

2883 14.7% 85.3%

4.7%95.3%

12.2%
32.8%
67.2%

87.8%

no fish fish
Predicted Class

no fish

fish

T
ru

e 
C

la
ss

RUSBoost
1179

181 1294

2202 34.9% 65.1%

12.3%87.7%

13.3%
37.0%
63.0%

86.7%

Fig. 13 ROI cross validation results for the Gulf of Mexico randomized training set.
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that fish-containing regions often do not have the same characteristics or data distributions as one
another. Additionally, the classifiers that we tested traditionally assume that all data instances are
independent; due to the nature of our data, this assumption is not entirely true: adjacent instances
are spatially correlated. However, in spite of not always achieving similar performance on the
testing data, several of the classifiers were able to identify the majority of fish-containing regions
in the testing sets.

Although no classifier definitively came out on top, we can see several patterns and make
recommendations. On the Yellowstone data, RUSBoost and the neural network performed well
across both experiments. While LDA and the decision tree also performed well, the fact that they
missed both fish-containing regions in the randomized testing set could be a cause for concern if
they were used in future campaigns at Yellowstone Lake.

On the Gulf of Mexico experiments, the decision tree and RUSBoost came out on top in both
experiments. The decision tree tended to classify more regions as containing fish than RUSBoost
did; on one hand, this increases recall, which is desirable, but it also increases the number of
false-positive regions that would need to be inspected. RUSBoost did not find as many fish, but it
was able to discard more fishless regions. In a real-world Gulf of Mexico campaign, the choice
between using RUSBoost or a decision tree would rely on the relative importance of finding all
fish versus reducing manual labor. Furthermore, if one is most interested in reducing manual
labor, and can tolerate missing a significant number of fish-containing regions, the neural net-
work would be a good choice because it consistently discarded over 60% of the training data in
both experiments on both datasets.

Table 11 F 3 scores achieved on the cross validation and holdout sets for the randomized train/
test split experiment on the Gulf of Mexico dataset. Additionally, the percent of regions that were
discarded in the testing data by each classifier are reported. The best F 3 scores are marked
in bold.

SVM LDA
Neural
network

Decision
tree RUSBoost

Cross validation F 3 0.3310 0.0298 0.4216 0.8005 0.7716

Holdout F 3 0 0.0210 0.3535 0.8166 0.7702

% regions discarded 100 98.02 83.84 8.57 29.43
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Fig. 14 ROI holdout results for the Gulf of Mexico randomized testing set.
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Overall, based on the results seen in this study, we would recommend using either RUSBoost,
a decision tree, or a neural network to detect fish regions in aerial lidar surveys. We cannot
recommend using an SVM, as it was almost always uninformative; this is likely caused by the
high class imbalance in fishery surveys. If reduced training time is important, one should con-
sider using a decision tree; RUSBoost and neural networks had longer training times, as shown in
Table 12. It is worth nothing that regardless of which classifier is used, the classifier needs to be
trained on data from the specific survey being analyzed; in general, the results from classifiers
trained on data from different locations or different instruments will not transfer to new locations
or instruments.

Comparing the results between the first-day training set (Sec. 5.1) and the larger, randomized
training set (Sec. 5.2), we see that using the larger training set produced better results on the
testing set, as expected. The cross validation results on the randomized training set were lower
than those on the first-day training set; this makes sense because the randomized training sets
were more diverse, resulting in harder-to-learn data distributions. Nonetheless, the results show
that our methods can be useful in both real-world scenarios simulated in Secs. 5.1 and 5.2.

Figure 15 shows a representative example of the predicted labels for an ROI. The predicted
labels found one fish, missed one fish, and predicted several false fish. This behavior should
prompt a human to take a closer look, which is why it was labeled as an ROI.

As an example of the time savings that our method can achieve, consider RUSBoost’s hold-
out results on days 2–12 in Fig. 14. RUSBoost predicted 1386 (26.8%) regions as not containing
fish. 1386 regions is ∼13.5 h of lidar data. With an average analysis time of 15 min for an hour of
lidar data, 1386 regions would take ∼4.6 h to analyze. Inspecting the Gulf of Mexico data took
about 14 h total; saving 4.6 h of manual labor is an ∼33% time savings.

Table 12 Training runtimes in seconds. The runtimes are totals for the entire tuning procedure
described in Sec. 4.4.1. The training was run on a Linux computer with an i9-9900k and 32 giga-
bytes of RAM.

Yellowstone Lake Gulf of Mexico

First day
training time

80% split
training time

Fist day
training time

80% split
training time

SVM 30.38 63.78 129.55 670.96

LDA 16.83 18.73 173.62 935.13

Neural Net 334.74 883.19 9377.30 46401.00

Decision tree 22.64 45.99 578.54 4684.90

RUSBoost 177.80 235.19 2888.80 8074.30
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Fig. 15 An example ROI from the 2016 Yellowstone flight.
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7 Conclusion

In this study, we demonstrated the feasibility of using supervised machine learning techniques to
detect regions that have a high probability of containing fish. We devised two experiments to
simulate real-world scenarios: one with a classifier that is trained after the first day of a campaign
and used during the subsequent days, and one with a classifier that is trained on a previous cam-
paign in preparation for a new campaign at the same location. In both cases, we found that several
classifiers were able to correctly detect the majority of fish-containing regions while reducing
the amount of data that would require manual inspection. This is a significant improvement
over manual inspection, which is the current state-of-the-art in the field. Additionally, we made
recommendations on which classifiers should be used for future lidar-based fishery surveys.

7.1 Future Work

Given the plethora of machine learning techniques available, there are many avenues for future
work. One of the primary directions will be to extract features from the data, as feature engineer-
ing might improve results compared with using the raw data. Using classifiers, such as recurrent
neural networks, that model the time-dependency between samples is also a promising direction
for further research. Another interesting area of future work is to aggregate multiple classifiers
into an ensemble. For example, aggregating the outputs of the RUSBoost, decision tree, and
neural network classifiers used in this study could result in improved performance.

In addition to further exploration of supervised learning techniques, we will direct future
research efforts toward real-time and unsupervised fish detection methods. Real-time methods
would allow researchers to detect fish during flight, enabling personnel on the ground to carry
out further operations, e.g., collecting more data or removing invasive species. Unsupervised
methods would eliminate the need for ground truth labels, resulting in further time savings.
Although there is still room for improvement, our results motivate further application of machine
learning techniques in fishery surveys and other lidar-based remote sensing applications.
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